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A MATRIX EQUATION ARISING I N  

STATISTICAL  FILTER THXORY 

ABSTRACT 

This  report   describes  the  behavior of the  solutions of a 
matrix  Riccati  differential  equation  arising in statist ical   f i l tering 
and  optimal  control  theory.  The  statistical  problem  leading  to 
the  Riccati  equation is outlined.  Definiteness,  ordering  and 
boundedness  properties of the  solutions of the  general  differential 
equation  with  time  varying  coefficients  are  derived. When the 
differential  equation  has  constant  coefficients,  it is shown  that 
under a set  of physically  reasonable  conditions  there is a  unique 
steady  state  solution  to  which  all  other  solutions  converge  at 
an  exponential  rate. 

by James  E. Potter 
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SECTION 1 

INTRODUCTION 

This  report   discusses  properties of the  solutions of a 
Riccati  differential  equation 

E' = A(t) E +EAg(t) - EB (t) E +C(t)  (1-1) 

in  which  the  solution  E(t)  and the coefficients A(t) ,  B(t)  and  C(t) 
a re  n by n matrices.  This  equation arises in  determining  the 
best   l inear estimate of the  solution of a linear  differential  equa- 
tion  driven  by  white  noise.  Matrix  Riccati  equations  also arise 
in  the  calculus of variations  and  in  various  problems  in  applied 
mathematics.  The  assumptions  made  about  the  coefficients  A(t), 
B(t)   and  C(t)   and  the  particular  properties of the  solutions  of 
(1 -1) which are investigated  in  this  report  are  those  which are  
relevant  to  the statistical problem.  Reid  and  Levin  have  dis- 
cussed  matrix  Riccati  equations  in a general  context, Many of 
the  ideas  which are treated  in  detail  in  this  paper  appear  in 
reference 3.  

1 2 

The  statistical  problem  leading  to  the  Riccati  equation 
is outlined  in  this  section.  The  following  sections  examine  the 
Riccati  equation  from  the  standpoint of differential  equation 
theory  and  do not make  use of probabilistic  ideas. In Section 

2, definiteness,  ordering  and  boundedness  properties are  derived 
for  solutions of equation (1-1). Section 3 is concerned  with  the 
autonomous  case  in  which  the  coefficients of the  Riccati  equation 
a re  constant  matrices.  The  results of Section 3 depend on the 
assumption  that  all of the  unstable  modes of the  l inear  differen- 
tial equation  whose  solution is being  estimated are driven  and 
a re  measurable.  A Riccati equation  with  constant  coefficients 



corning  from  such a statist ical   problem w i l l  be  called  regular. 
It 1s shown  that a regular  matrix  Riccati  equation h a s  a unique 
positive  semidefinite  critical point o r  steady  state  solution  and 
that  any  solution w i t h  a positive  semidefinite  initial  value  con- 
verges exponentially fast to  the  steady  state  solution. 

Let the  n-dimensional  column  vector  x(t) be the  solution 
of the  linear  differential  equation 

x’ = A ( t )  x + w (1 - 2 )  

where  A(t) is a deterministic n by n matrix.  The  driving  func- 
tion w in  equation ( 1 - 2 )  will  be  assumed  to  be  white  noise,  that 
is, a n  n-dimensional  Schwartz  distribution  valued  random  pro- 
cess  whose  formal  first  and  second  moments are  4 J  

and 

In equations (1 -3)  and (1 - 4 )  the  horizontal   bar  represents  the 
statistical  mean  or  expected  value,  the  asterisk  represents 
the  conjugate  transpose  operation  and  the n by 11 matrix 
C(t)  is positive  semidefinite  for  each  value of t .   The   formal  
first  and  second  moments of \v a re  Schwartz  distributions  and 
determine  the  f irst   and  second  moments of the  random  variables 
obtained  when  the  random  functional w acts  on  deterministic 
functions  in  its  domain. 

It is desired  to   es t imate   x( t )   by  f i l ter ing  the  observable  
k - dimensional  stochastic  process  (measurements)  m(t), 

w h e r e  H(t) is a k by n matrix  and  r(t)  is k-dimensional  white 

noise.  The  two  white  noise  processes w ( t )   and  r ( t )  w i l l  be  

assumed  to  be  uncorrelated  with  each  other  and  with  the  init ial  

2 



value of x. 

Kalnlan  and Bucy' have  shown  that, i f  only  values of m(s) 
f o r   s S t   a r e   t o   b e   u s e d  in  forming  the  estimate,  the  minimum 
variance  l inear  estimator of x (t) .is the  solution X (t) of the  dif- 
fer ent ial equation 

A 

with  the  initial  condition 

The n by n weighting  matrix  E(t)  in  equation (1-6)  is obtained b.y 

solving  eauation (1-1) with the  initial  condition 

where  U(t) is the  positive  definite  matrix  associated  with  the 
formal  second  moment of r, 

A s  indicated  above,  the  matrices E(O), B(t) and C ( t )   a r e  
positive  semidefinite  in  the  statistical  application.  Since  E(t) is 
a covariance  matrix,  it  should  follbw  that  E(t) is posit ive  semi- 
definite  for all values of t .  This  fact is established  in  Theorem 
2 - 1 .  Since  the  right-hand  side of equation (1-1) does not satisfy 
a global  Lipschitz  condition, its solution  may  escape  to  infinity 

3 



a t  a finite time. For example,  the 

E = E  ? 2  

has the  solution 

r 

Riccati  equation 

1 -1 

which  escapes  to  infinity when 

1 t = min x x > o  

where  the  minimum is taken  over  the  eigenvalues of E(0). This 

possibility is ruled out in the  statistical  application by Theorem 

2-  2. 

The  following  three  part  regularity  condition is assumed 
in  proving  the  theorems i n  Section 3: 

(a) B  and C are positive  semidefinite.  The  proofs of 
Theorems 3 - 4  and 3-5 could  be  considerably  shortened 
if it   were  assumed  that B and C a r e  positive  definite 
rather  than  positive  semidefinite.  However,  definiteness 
is a fairly  restrictive  assumption  since in  applications 
the  observed  stochastic  process  m(t) is often  a sca la r  
so  that  the  rank of B(t) is one.  Furthermore, C has  
rank  one  when  equation (1- 2) is the  system  represen- 
tation of a single  n-th  order  differential  equation  driven 

by sca la r  white  noise. 

(b) No eigenvector of A whose  eigenvalue  has  a  non- 
negative  real  part is a  null  vector of B. Since U is 
positive  definite,  it  follows  from  equation (1 -7)  that 
eve.ry null  vector of B is a null vector of H, In view 
of equation (1- 5), condition  (b)  may be interpreted as 
requiring  that  every  unstable  mode of equation (1-2) 
affect  the  measurements  m(t).  It is clear  that if 
this  condition is not  satisfied, (1-1) cannot  have  a  steady 
state  solution  since  the  estimation  error  variance  for  an 
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unmeasurable  unstable  mode  would  be  unbounded for 
large t. 

(c) No eigenvector of A"' whose  eigenvalue  has a non- 
negative real pa r t  is a null  vector of C. If e is an  un- 
stable  eigenvector of A , the  second  moment of the 
sca la r  white  noise  u(t)  driving  the  mode of equation 
(1- 2 )  corresponding  to e is 

:!c 

J, 

u(t)   u(s)  = e*!' Ce a( t -s)  

Thus, if e is a null  vector of C,  the  unstable  mode  cor- 
responding  to e is undriven.  Examples  indicate  that, if 

condition  (c)  does not hold,  equation (1 - 1) has  positive 
semidefinite  critical  points  which are  not stable  in 
addition  to a stable  critical  point. It is not  assumed 
that A has a diagonal  Jordan  form. 

Recent  investigations7'  have  shown  that  the  estimation 
problem  in  which  the  measurement  noise  r(t)  is the  solution of 
a linear  differential  equation  driven  by  white  noise  leads  to a 
matrix  Riccati  equation  in  which E(O), B(t)  and  C(t) are again 
positive  semidefinite.  This  estimation  problem  contains  the 
Wiener  theory of filtering  and  prediction of stochastic  processes 
with  rational  power  spectra. 9 

Kalman  and Bucy' have  shown  that  the statistical problem 
described  above is the  dual of a problem in linear  control  theory. 
Therefore,   the  results of this  report  should  apply  to  that  problem. 
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SECTION 2 

DEFINITENESS,  ORDERING AND 
BOUNDEDNESS OF SOLUTIONS 

If R and S a re  hermitian  matrices,   the  inequality R > S 
will  be  used  to  indicate  that  the  matrix  (R-S) is positive  definite. 
Similarly, R Z S wi l l  indicate  that  the  matrix  (R-S) is positive 

semidefinite.  Any  matrix  which  appears  in  an  inequality  will 
be assumed  to  be  hermitian.  

In the  following  analysis it will  be  assumed  that  A(t), 
B(t)  and  C(t) are locally  integrable  functions of t and  that  B(t) 
and  C(t) are hermitian  for  each  value of t. The  existence  and 
uniqueness  theorems  for  ordinary  differential  equations lo imply 
that,   for a given  initial  condition E(O), equation (1- 1) has a 
unique  absolutely  continuous  solution on some  interval (0, a). 
By the  continuation  theorem,  this  solution  may be continued 
to (0 , a + E) for  some E > O i f  - 

l im  max I (t) I < 00 

t + a -  i, j 

Since  B(t)  and  C(t) are hermitian  and  E(t)   satisfies (1-1) on 
(0,  a),E:"(t)  also satisfies (1-1) and it follows  by  uniqueness 

that  E(t) is hermitian  provided  that  E(0) is hermitian. 

Theorem 2-  1 

If E(t)  satisfies equation (1-1) for  t E [o , a), E(O) Z 0 

and  C(t) 2 0 for   a lmost   every t E lo, a), then  E(t) 5 0 for   every  

t E [o, a). 

Proof:  Assume  that s E I. , a) ,   l e t  x be an   a rb i t r a ry  n 

di.mensiona1  column  vector  and let y(t)  be  the  solution of the 
linear  differential  equation 

6 



with 

Then by equation (1- l ) ,  . 
.L 

(y.''' Ey) ' = y'" Cy 

The  conclusion of the  theorem  follows  immediately  from 
equation ( 2 - 2 ) .  Equation ( 2 - 2 )  also  implies  the  following 
corollary. 

Corollary 1 

If, in  addition  to  the  hypothesis of Theorem 2-1,  E(0) > 0 

or C(t)  > 0 for  almost  every t E [0, a), then  E(t) > 0 for  every 

t E (0, a). 

Corollarv 2 

If El(t)   and  E2(t)   are  solutions of (1-1) on EO, a )  with 

coefficients  A(t),  Bl(t),  Cl(t)  and  A(t),  BZ(t),  C2(t)  respectively, 
with E2(0) 5 E1(0)  and  Bl(t) S B2(t)  and  C2(t)  2 Cl(t)   for  almost 
every t E KO, a),  then  E2(t) S El(t)   for  every t E [O, a ) .  

Proof: The  matrix 

satisfies  the  differential  equation 

x' = (A - E  B ) X + X(A - E B ) - X B2X + E1(B1-B2)  El 
1 2  1 2  

4- c2 - c1 (2-3) 

I 
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The  corollary  follows by applying  Theorem 2-1  to  equation (2 -3 ) .  

Theorem 2-2  

If E(0)- => 0 and  B(t),  C(t) => 0 for  almost  every t E 

[OJ then  the  solution of (1 - 1) does  not  escape  to  infinity 

a t  a finite  time  and  the  elements of E(t)  satisfy  inequality 
( 2  - 7 )  below. 

Proof:  Suppose  that  the  solution  E(t)  exists  on  the  interval 

[o, a )  . Since  the  hypothesis of Theorem 2 - 1  is satisfied,  E(t) 2 0. 
This  implies  that 1 Eijl 5 Eii Ej j  6 z(Eii  1 + E . . )  2 

33 

and  therefore 

Let 

Then 

I n  

j= 1 

Since  E B E  2 0, its  diagonal  elements  are  non-negative,  and 

t r   E B E 2  0 .(2-5) 

Taking  the  trace of both s ides  of equation (1-1) and  using (2 -4)  

and ( 2 -  5) yields 

8 



and  applying  the  method of proof of Gronwall 's  lemma  yields 

$tr E(t)  5 exp (+f a(s) ds  ) { t r  E(0) 

0 

In  view of the  continuation  theorem,  inequality (2-7)  implies 
that  the  solution E(t) exists  on  the  entire  right half line. 

This  theorem  may  also  be  proved  using  the  method of 

proof of Lemma 1 of Theorem 3 - 5  below. 

9 



SECTION 3 

CRITICAL  POINTS IN THE AUTONOMOUS CASE 

In this  section  it w i l l  be assumed  that  the  coefficients 

A, B and C in  equation (1 -   1 )  are  constant  matrices  and  that  
B  and  C are  hermitian.   The  matrix S is a critical  point of 
equation ( 1 - 1 )  if it is a zero of the  right-hand  side,  that is, 
i f  

AS + SA'" - SBS + C = 0 ( 3 - 1 )  

It will always be assumed  that S is a hermitian  matrix. If S 

is a crit ical   point of equation (1-11,  then  the  matrix 

X(t) = E(t)  - S 

satisfies t he  differential  equation 

X' = F X  + X F": - X B X  

with 

F = A-SB 

( 3 - 2 )  

( 3 - 3 )  

Equation ( 3 - 2 )  may be formally  transformed  to a linear  differen- 

tial  equation by letting 

Y(t)  = xw-l 
Then, i f  it   exists, Y satisfies  the  differential  equation 

y'= -F"Y - Y F  + B 

From  equation ( 3 - 2 )  it follows  that  the  linearization of ( 1 -   1 )  

about  the  critical  point S is 

X' = F X  + XF:" ( 3 -  4) 

The  solution of equation ( 3 - 4 )  is 

10 



with 

By a wel l  known theorem on critical  points of autonomous 
systems,  O' 314) S is asymptotically  stable i f  F is 
a stable  matrix,  that is, has  only  eigenvalues  with  negative 
real parts.  If one of the  eigenvalues of F has a positive real 
part ,   the  cri t ical   point S cannot be asymptotically  stable, but 
i f  some of the  eigenvalues of F have  zero  real   parts while  the 
rest have  negative real pa r t s  a more  detailed  analysis is re- 
quired  to  determine  whether S is asymptotically  stable. If 
the  matrix F is stable  the  critical  point S will be called 
persistent.  

The  following  theorem  from  matrix  theory is needed a s  
a tool  in  the  following  analysis. 

Theorem 3 - 1 

If the  matrix R is stable,  and V 2 0, then  the  equation 

RU + UR" = -V 

has a unique  solution  and U 2 0. If V > 0, then U > 0 ,  

This  theorem is proved  in  reference 11 on pages 81 to 

84 and in reference 1 2  on pages 220 to  226.  

Theorem  3-2 

If B 2 0, then  equation (1-1) has  at  most  one  persistent 
critical  point. 

Proof:  Let S and S be  two  persistent  critical  points of 1 2 
equation (1-1) and  let X =S2 - S1. Then  by  (3-2), X satisfies 

11 



FIX + XF; = XBX 

with 

F1 = A - S I B  

Since XBX 2 0 and F1 is stable,   Theorem 3-1 implies  that X 5 0. 
Interchanging  the  roles of S1 and S2, it  follows  that X 2 0. Hence 

x = o .  
Definition:  The  set of coefficient  matrices ( A ,  13, C )  i n  

equation (1 -1) wi l l  be  called  regular i f  

(a) B, C 2 0 

(b) No eigenvector of A whose  characteristic  value  has 
a non-negative real par t  is a null  vector of B.  

( c )  No eigenvector of A" whose  characteristic  value  has 
a non-negative real par t  is a null  vector of C.  

Theorem 3- 3 

If S 2 0 is a critical  point of (1 -1) and (A,  B, C) is regular ,  

then S is pers is tent .  

Proof: It w i l l  be  shown  that  the  eigenvalues of F": = - RS * ;k 
have  negative real parts.  Equation ( 3 - 1 )  may  be  rewrit ten as 

FS + SF':' + SBS + C = 0 ( 3 - 5 )  

Let e be  an  eigenvector of F'k corresponding to  the  eigenvalue 

X + iy and  multiply  equation ( 3 - 5 )  on the left by e"' and on the  

right  by e. 

Then 

2X e* S e  + ehk  SBSe + e* Ce = 0 ( 3 - 6 )  

Suppose e"' Se = 0.  Since S 2 0,  this  implies  that  Se = 0 ,  
F?"e = A"e and  hence e is an  eigenvector of A"' with the   s ame  
eigenvalue.  Since  each  term  in  equation ( 3 - 6 )  is nonnegative, 

e&Ce = 0 and e is a null  vector of C .  Therefore,  X is negative 

.L 
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by regularity  property ( c ) .  

Suppose  e"  SBSe = e"Ce = 0.  Let B be a matrix  such 1 
that B = BT B1. B can  be  found  since B 2 0. Then e:% SBSe = 

(B1 Se):'(B1 Se) = 0 or B1 Se = 0 and  finally  B" B Se = BSe = 0. 

Again F'"e = A"e, e is a null  vector of C and  hence X is negative 
by regularity  property ( c ) .  

1 
1 1  

.l. 

Finally, i f  e' Se > 0 and e" SBSe or e:'Ce > 0, 

and  the  proof is complete. 

Remark:  Regularity  property  (b)  need not be  included  in  the 
hypothesis of Theorem 3 - 3  since  it  is never  used  in  the  proof. 
IIowever,  its  inclusion  results  in no loss of generality  since 
if  regularity  property  (b)  fails  to  hold, F cannot  be  stable.  For, 
i f  e is  an  eigenvector of A corresponding  to  an  eigenvalue  with 
a nonnegative real part  and e is also a null  vector of B,  then 
F e  = Ae  and F is not stable. 

Physical  reasoning  leads  to  the  conjecture  that F is always 
more  stable  than A ,  that is that  all of the  eigenvalues of F have 
smaller  real   parts  than  the  eigenvalue of A having  the  largest 
real   par t .   This  would mean  that  the  transients in  the  estimation 
statist ics  die out at  least as quickly as  the  transients  in  the 
equation (1 -2 ) .  The  following  example  shows  that  this is not 
always  true. 

The  eigenvalues of A a r e  - 2  and -5. 

= [I: -,:I 
13 



The  eigenvalues of F are 

2 ( - 1 3  f 6) = - 1 . 1 8 ,  - 11.82 

Theorem 3-4 

If (A,  B, C) is regular,   then (1-1) has  a critical  point 
s 20. 

Proof:  The  critical  point  will  be  obtained  by  solving  equation 
( 3 - 1 )  by  Newton's  method. For a hermitian  matrix M, let 

f (M)  = -AM - MA" + MBM - C (3-7) 

To  start  the  Newton's  method  iteration,  it  is necessary  to  f ind a 
matr ix  So 2 0 such  that  f(So) 2 0 .  

Since  it is not c lear   that   such a matr ix   exis ts  if B is singular,  
the  Theorem  will   f irst  be proved  assuming B > 0.  In this   case 
f(a1) 2 0 fo r  a sufficiently  large  positive  number a. 

If S is considered as an n dimensional  vector  and  the 2 

Newton's  method  iteration  formula is applied  to  equation  (3-1), 
the  recursion  formula 

is obtained. It w i l l  be  proved 
of mat r ices  

s o =  1 2 '  = s  2 s  

satisfying  equation (3-8). 

Fi r s t ,  So 1 0 and  f(So) 
s equence 

( 3 - 8 )  
by  induction  that  there is a sequence 

. . 2  0 (3 -9 )  

1 0 .  Suppose  that  there is a 

14 



f(SN) 2 0. SN satisfies  the  matrix  quadratic 
A 

A SN -t- S A"' - SN B SN + C = 0 N 

with 
A c = c +f (SN) 

A A 

Since c 2 C, (A,  B, C )  is regular  and by Theorem 3-3 ,  
4 
F =  A -  'N B 

is stable. By Theorem  3-1,  equation ( 3 - 8 )  can  be  solved for 

' N +  1 =  > 0 ,  By ( 3 - 7 )  and  (3-8)  it  follows  that 

Furthermore,   let  D = SN - SN + 1. Then DN satisfies  the 
equation 

N 

By Theorem 3-1, D Z 0, o r  
N -  

Thus,  the  existence of the  sequence 

S 0 2 S 1 2 ' .  . 2 s N +  $ 0  

with  f(SN + ) 2 0 has  been  proven.  The  existence of ( 3 - 9 )  

follows  by  induction.  Since (Sk 1 k = 0, 1,  2 , .  . .) is a 
decreasing  sequence  bounded  below,  it  has a limit13 S 2 0. 

Taking  the  lirnit of equation ( 3 - 8 )  as k-wc yields 

A S  + SA':' - SBS + C = 0 

and  the  theorem is proved  for  the  case when B > 0.  

The  following  lemmas are  needed  to  handle  the  case  when 
B is singular. 



Lemma 1 

If S 2 0 is a critical  point of equation (1 -1 ), (A,  B, C )  is 
regular  and no  eigenvalue of A has a negative real part ,   then 

s > 0.  

Proof of lemma:  Let N be  the  null   space of S and let n 
be a null  vector of S .  Multiplying  equation  (3-1) on the  left by 
n'" and on the  right  by n yields  n"  Cn = 0 and  since C 2 0 ,  

.Ir 

Cn = 0 (3-10) 

Now multiply  equation  (3-1) on the  right  by  n. In view of (3-10) 
this  yields SA"' n = 0 and  hence A*NcN. Thus, i f  N is not empty, 

A"  has  an  eigenvector e such  that e E N. By the  hypothesis of 
the  lemma,  the  eigenvalue  corresponding  to e must  have a non- 
negative real par t .   This   cannot   be  t rue  s ince it violates  regu- 
lari ty  property  (c)  and  therefore N must  be  empty. 

Lemma 2 

If (A, B, I) is regular,   then  there  exists U 2 0 such  that 
(A - UB) is stable.  

Proof of lemma: If A is stable  the  lemma  follows b.y choosing 
U = 0.  If A is not stable,  choose T such  that 

where  the  submatrix A has  no  stable  eigenvalues  and  the  sub- 

matrix A 4  is stable,  and  let 
1 

Since (A, B, I) is regular,  it follows  that no eigenvector of A I  is 
a null  vector of B1 and  therefore  that (-A: , I, B1) is regular .  

16 



I 

Let S1 2 0 be  a solution of the  matrix  quadratic 

-A: S1 - S A - SI f B1 1 1  = o  2 

S1 exists since  the  coefficient of the  second  degree term in S 
is .definite. By the  preceding  lemma S1 is nonsingular.  There- 
fore  

1 

A1 s;' + s;l A1 :# - Si' B1 Si' + I = 0 

and  by  Theorem 3-3, AI - Si' B1 is stable. 

Finally,  let 

Then 

A1 - Si' B1 

T - ~ ( A  - u B) T = (3-11) 
0 

The  matrix on the  right-hand  side of (3-11) is stable  since  i ts  
diagonal  blocks a re   s t ab le  and  therefore (A - UB) is stable.  

The  existence of S when B is singular  may now be 0 
proved  as  follows. By the  lemma,   there  is a matr ix  U 2 0 such 
that G = A - U B  is stable.  Choose M 2 0 so  that 

M 2 A U  + UA"' - U B U + C 

By Theorem 3-1, the  equation 

has a solution H 2 0. Then,  letting So = U + H, it follows  that 
So 2. 0 and 

f(so) = M - A U  - UA;~ + UBU + HBH - c g  HBHZ o 
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Remark: If A is stable, a suitable  value of S may  be  0 
obtained  by  solving  the  equation 

When A is stable, S may  a lso  be found  by the  method of spectrum 
factorization  due  to  Wiener.  (Ref* " 14'  15) Although  they are  
efficient  from a computational  standpoint,  the  spectrum  factor- 
ization  formulas look quite  formidable  when  written  in  terms of 

the  present  notation,  and  the  formal  relationship  between  spec- 
trum  factorization  and  the  matrix  quadratic  (3-1) is not c l ea r .  
This  might be  an  interesting a rea .  for  further  study. S may  be 
written as an  elementary  function of A ,  B and C if  A is hermitian 
and B o r  C is a multiple of the  identity  matrix. If I3 =bI,  then 

In these  formulas,  the  exponent 1 / 2  denotes  the  positive  semi- 

definite  square  root  operation. 

Theorem 3- 5 

If (A ,  B, C )  is regular ,  S is the  positive  semidefinite  critical 

point of (1-1) and  E(t)  is a solution of (1-1) with E ( O ) Z  0 ,  then 
E(t)+S  ex1)onentially  fast  as  t+m. 

Proof: Let Eo(t)  be  the  solution of (1-1) with E ( 0 )  = O s  0 
Also let H >  0 satisfy 

€ I >  s 
and 

and  let El( t )  be  the  solution of (1-1) with  E1(0) = H. Then by  

Corollary2 of Theorem 2 - 1  it  follows  that 

18 



It w i l l  be  proved  below  that  Eo(t)  and  El(t)  approach S exponentially 
fast as t- w .  Thus E(t) is squeezed  between E (t)  and El(t) and 
approaches S exponentially fast. This may  be  shown  formally as 

0 

follows. By (3-12) 

O S E - E o S E 1 - E o  

and  taking  operator 11orm.s 

and  finally 

IIF - I1 IIE - Eo I1 + llE0 - I I  
or  

Lemma 1 

If E( t )  is a solution of (1-1) with  E(0) = H > S then 

E(t)-S  exponentially Fast as t-oo. 

Proof of lemma:  Let 

X(t)  satisfies  the  differential  equation 

X ' =  F X  + X F "  - X B X  

with  the  initial  condition 

X(0) = H - S > 0 

By Theorem  2-1, 

X(t)  2 0 

Let  Y(t)  be  the  solution of the  differential  equation 

(3-13) 

( 3 - 1 4 )  
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with  initial  condition 

with  the  initial  condition 

Thus 

and,  since  (by  Theorem 3 - 3 )  F is stable,  

X(t) = E(t)  - S+O 

exponentially  fast as t+ cc. 

Lemma 2 

If F ( t )  is a solution of ( 1 - 1 )  and E(0) = 0, then E(t)-.S 

exponentially  fast as t-+w , 

Proof of lemma:  The case when S > 0 wi l l  be   t rea ted  

first .   The  idea of the  proof is derived  from  the  fact   that  if 
equation (1-1) has a negative  definite  critical  point S(-) ,  then a 
hermitian  initial  condition E(O) > S ( - )  resul ts   in  a solution of 
(1  -1) which  converges  to S. Although  equation (1  -1) does not 

have a negative  definite  critical  point  in  general,  the  formal 
matrix  quadratic  satisfied by S ( - )  always  has a negative  semi- 
definite  solution  (which  may  be a singular  matrix) i f  (A, B, C) 
is regular .   This  is the  motivation  for  finding  the  solution of 

-1 
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equation (3-15) .  

Consider  the  matrix  quadratic  equation 

A:"U + UA - UCU + B = 0 (3 -15)  

(Aa, C, B) is regular  since (A, B, C )  is regular,  and by Theorem 
3-4,  equation (3-15)  has  a solution U 2  0. Let 

w =s- l  - (S + sus r l  
Since S and S + SUS are  nonsingular,  it  follows  that ( I  + US) and 
(I + SU)  are  nonsingular  and  that 

w = U(I + Su)-l = (I  + uS)-lu (3 -16)  

Fmploying (3-1) ,   (3 -15)  and (3 -16)  it   may  be  verified  that W 

satisfies  the  equation 

F'" W + W F  = -B  (3 -17)  

Since F:" is stable, 

w2 0 

by  Theorem 3-1.  From the  definition of W it follows  that 

s-l - w >  0 (3-18) 

Finally,  let 

X(t)  = F( t )  - s (3 -19)  

X(t)  satisfies  equation ( 3 - 2 )  with  the  initial  condition X(0)  = -S. 

It may b e  verified 11y substitution,  employing  equation (3-17) ,  

that 
F ::: 

X(t) = -eFt  Z-'(t)e (3 -20)  

I. 
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Thus  by  (3-19),  (3-20)  and  (3-22) 

11 E(t) - SI1 2 11 e-Ft 11 11 { S - l  - W} -' 11 
and E(t)+S exponentially fast as t+co s ince  F is a s table   matr ix ,  

The   case  when S is singular wil l   be   t reated  by  t ransforming 

equation (1-1) t o  a more  convenient  form.  Assume  that  the  rank 
of S is I< with k < n.  Then  there is a nonsingular n by n matr ix  

T such  that 

T S T = S =  
>;< - r 

0 "1 0 
(3-23) 

The partitioned  matrix on the  extreme  right  hand  side of equation 
(3-23)  consists of a k by k identity matrix in  the  upper left hand 
block  and  three  other  blocks  containing  zeros.  Employing  the 
same  parti t ioning,  let  

- 
C = T  C T  = 

>k 

and  define 

% 

B3 *4 "'I 
c4  c21 

(3-25) 

(3-26) 

(3-27) 
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I 

(3-28) 

Under  this  transformation,  all  of  the  preceeding  equations  retain 
the  same  form  with  tilde  matrices  replacing  non-tilde  matrices. 
In the  statistical  filtering  application  this  transformation  repre- 
sents a change of basis  in the  domain of the  stochastic  process 
x(t)  being  estimated.  Thus,  the  transformation  does not change 
the  qualitative  aspects of the  problem. In particular,  F is stable 
i f  and  only if  F is stable  since  they  have  the  same  Jordan  normal 
form,  and (A,  B, C )  is regular i f  and  only i f  (A, B, C )  is regular.  

- 
" -  

In t e rms  of partitioned  matrices,  the  tilde  version  of 
equation ( 3 - 1 )  takes  the  form 

o =  (3-29) 

Thus, C4 = 0 and C 2  = C 3  = 0 since C 2 0. This in turn  implies 
'CI 5 

that A 3  = 0.  Hence, A and C may  be  written  as 

- A =  [ 111 (3 -  30) 

and 

c1 0 

- 
It may  be  verified  by  substitution  that, if E(t)   is   the  solu- 

tion of the  tilde  version of (1-1) with E(O) = 0, then 
u 

( 3 - 3 1 )  
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where El(t) satisfies the  differential  equation 

E; = A E + E ~ A :  - E ~ B ~ E ~  + c1 1 1  (3-32) 

with  the  initial  condition 

E1(0) = 0 

From  the  upper  left  hand  block  in  equation (3-29), it follows 
that S1 = I is a critical  point of equation (3-32). In orde r   t o  
apply  the  proof  above  for  nonsingular S to  equation (3-32) it is 
necessary  to  show  that (A1, B1, C,) is regular .  

Regularity  property  (a)  holds  since  principal  submatrices 
of  posit ive  semidefinite  matrices  are  posit ive  semidefinite.  If 
u is an  eigenvector of A whose  eigenvalue  has a non-negative real 
part ,   then 

1 

is an  eigenvector of A with  the same eigenvalue. By regularity 
property  (b)  for (x, E, E ) ,  it follows  that 

e'kB e = u" B1 u # 0 

Therefore  (A1 ,  E,, C ) has  regularity  property (b).  1 
Let u be  an  eigenvector of AT corresponding  to  an  eigen- 

value c with a non-negative  real  part.  Since A 4  is stable,   the 
matrix C I  - A~'' is nonsingular.  Let 4 

and  let 
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Then 
Y;c 

ii e = c e  

and  by  regularity  property (c) fo r  (A, B, C )  it follows  that 
" -  

e':' E e = U"C, u +  o 

Therefore  (A, , B1 , C,)  has  regularity  property (c) and  the  proof 
of the  regular i ty  of (A, , B1 , C,) is complete. 

By t h e  proof  above for a nonsingular S, it follows  that 

El(t)+S1 = I ( 3 - 3 3 )  

exponentially fast as t + m  . 
Thus 

exponentially fast in  view of ( 3 - 2 3 ) ,   ( 3 - 3 1 )  and ( 3 - 3 3 ) ,  and  t rans-  
forming  back  to  non-tilde  matrices  the  conclusion of the  lemma 
follows. 

The  net  result of Section 3 is the  following: 

Theorem 

If ( A  , B , C )  is regular , equation (1- 1 )  has a unique 
positive  semidefinite  critical  point S. This  critical  point is 
persistent  and i f  E( t )  is a solution of equation ( 1 - 1 )  with E(0)  2 0, 

then  E(t) + S exponentially fast as t * co. 
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